Model predicts gene responses to cold across diverse plant species

March 4, 2021

Lincoln, Neb. —When Xiaoxi Meng and Zhikai Liang first proposed the idea a couple of years ago, James Schnable was skeptical. To say the least.

“‘Well, you can try, but I don’t think it’s going to work,’” the associate professor of agronomy and horticulture recalled saying to Meng and Liang, then postdoctoral researchers in Schnable’s lab at the University of Nebraska–Lincoln.

He was wrong and, in hindsight, never happier to be. Yet at the time, Schnable had fair reason to raise an eyebrow. The duo’s idea — that the DNA sequences of cold-sensitive crops that surrender to a hard frost could help predict how wilder, hardier plants tolerate freezing conditions — seemed audacious. To say the least. Still, it was a low-risk, high-reward proposition. Because if Meng and Liang could get it to work, it might just fast-track efforts to make cold-sensitive crops a little or even a lot more like their cold-resistant counterparts.

Some of the world’s most important crops were domesticated in tropical regions — corn in southern Mexico, sorghum in eastern Africa — that put no selective pressure on them to evolve defenses against cold or freezing. When those crops are grown in harsher climates, their sensitivity to cold limits how early they can be planted and how late they can be harvested. Shorter growing seasons equal less time for photosynthesis, resulting in smaller yields and less food for a global population expected to approach 10 billion people by 2050.

For full news story click here

Story by Scott Schrage | University Communication